神奇的vfork

一段神奇的代码

在论坛里看到下面一段代码:
int createproc();
int main()
{
pid_t pid=createproc();
printf(“%d\n”, pid);
exit(0);
}
int createproc()
{
pid_t pid;
if(!(pid=vfork())) {
printf(“child proc:%d\n”, pid);
return pid;
}
else return -1;
}
输出结果:
child proc:0
0
child proc:0
Killed

感觉非常奇怪,为什么vfork以后,父子进程都走了“子进程”的分支呢?

什么是vfork?

      什么是vfork,网络上介绍它的文档很多,随便一搜就是一大堆。简单来说,vfork和fork完成了基本上相同的功能,把进程做了一次复制,变成两个进程。
在shell中,执行命令时,shell程序就是通过“复制”形成了父子进程。子进程生成后,执行exec系列函数,载入新的可执行文件,开始执行。
由于复制完成后,子进程马上就要载入新的程序来运行了,在此之前从父进程那里复制来的内存空间都不需要了。所以,“复制”过程中,复制内存空间是件费力不讨好的事情。
所以,fork有了“写时复制”技术。“复制”的时候内存并没有被复制,而是共享的。直到父子进程之一去写某块内存时,它才被复制。(内核先将这些内存设为只读,当它们被写时,CPU出现访存异常。内核捕捉异常,复制空间,并改属性为可写。)

   上面说到的内存空间是实际存储用户数据的空间,利用“写时复制”避免了干前面提到的那件费力不讨好的事情。
但是,“写时复制”其实还是有复制,进程的mm结构、页表都还是被复制了(“写时复制”也必须由这些信息来支撑。否则内核捕捉到CPU访存异常,怎么区分这是“写时复制”引起的,还是真正的越权访问呢?)。而vfork就把事情做绝了,所有有关于内存的东西都不复制了,父子进程的内存是完全共享的。但是这样一来又有问题了,虽然用户程序可以设计很多方法来避免父子进程间的访存冲突。但是关键的一点,父子进程共用着栈,这可不由用户程序控制的。一个进程进行了关于函数调用或返回的操作,则另一个进程的调用栈(实际上就是同一个栈)也被影响了。这样的程序没法运行下去。

      所以,vfork有个限制,子进程生成后,父进程在vfork中被内核挂起,直到子进程有了自己的内存空间(exec**)或退出(_exit)。并且,在此之前,子进程不能从调用vfork的函数中返回(同时,不能修改栈上变量、不能继续调用除_exit或exec系列之外的函数,否则父进程的数据可能被改写)。
尽管限制很多,但并不妨碍实现前面提到的关于shell程序的那个“需求”。

问题的思考

      说到这里,可以看出文章开头的那段代码是存在问题的了。子进程不但调用了printf,还从createproc函数中返回了。但是,子进程的违规为什么会使父进程走上“child proc”这条路呢?父进程在子进程退出前被阻塞在vfork里面,vfork的返回值是如何变成0的呢?前面一直在说vfork,其实它是两个东西,库(libc)函数vfork和系统调用vfork。用户程序调用的是库函数,而库函数再去调用系统调用。用户程序中几乎所有的系统调用都是通过库函数去调用的。因为不同体系结构下(甚至相同体系结构),系统调用的指令和参数传递规则都可能不同,这些细节被库函数隐藏了。

前面提到,父进程被挂起在vfork中,这是指的系统调用vfork。在系统调用中,进程使用的是内核栈(每个进程有着自己独有的内核栈)。此时,父进程在内核里面是安全的,随便子进程怎么违规。内核会保证系统调用vfork的完整性,系统调用的返回值也不会有问题(它是通过寄存器传回用户空间的,跟栈无关)。代码中从系统调用vfork返回后。

     代码中从系统调用vfork返回后子进程调用printf函数并且调用return返回到main最终执行exit(0),然后系统知道子进程要结束了,切换到父进程返回,但是此时由于保存在栈上的父进程返回地址由于子进程的违规(调用return)已经被改写,从而导致父进程返回地址的不确定性。具体到本例就是栈上的返回地址被改写了,从函数createproc返回,返回到printf(“child proc”)这句话去了。也就是说系统调用vfork总是确保父进程能够返回到此时保存在栈上的返回地址处。

再深入一点

     库函数vfork调用系统调用vfork后,库函数是怎样保证父进程正确返回到调用库函数的地址处呢?库函数vfork本身就是一个函数呀,库函数vfork调用系统调用vfork后此时,库函数vfork接着又返回了,按照一般的函数调用准则此时调用系统调用vfork时保存的返回地址已经被改写了。这时,程序的正确性又是如何保证的呢?

     关于函数调用,一般而言:调用前-调用者将需要传递的参数放到栈上;调用时-调用者使用call指令,该指令自动将返回地址入栈;调用后,在被调用的函数中,第一件事是做调用栈的调整,如createproc函数如是做:
08048487 <createproc>:
8048487:       55                      push   %ebp
8048488:       89 e5                 mov    %esp,%ebp
804848a:       83 ec 28            sub    $0x28,%esp
……
其中ESP是当前栈的指针,而EBP是上一层调用栈的指针。调用栈调整之前,EBP保存着上上一层栈的指针,这个值不能丢,需要放在栈上,以便函数返回时恢复。

每层调用都有自己的调用栈,“深”的调用不会影响到之前的调用栈。所以,vfork后子进程调用其他函数应该是没有问题的(但是可能会改写掉属于父进程的某些数据,造成逻辑上的错误),只要它不从调用vfork的函数中返回就行了。但是,库函数vfork本身却不是这样做的。在这个函数中没有使用栈上的内存空间,它没有去进行调用栈的切换,如:

000983f0 <__vfork>:

   0x00007ffff7355fa0 <+0>:     pop    %rdi
   0x00007ffff7355fa1 <+1>:     mov    %fs:0x2d4,%esi
   0x00007ffff7355fa9 <+9>:     mov    $0x80000000,%ecx
   0x00007ffff7355fae <+14>:    mov    %esi,%edx
   0x00007ffff7355fb0 <+16>:    neg    %edx
   0x00007ffff7355fb2 <+18>:    cmove  %ecx,%edx
   0x00007ffff7355fb5 <+21>:    mov    %edx,%fs:0x2d4
   0x00007ffff7355fbd <+29>:    mov    $0x3a,%eax
   0x00007ffff7355fc2 <+34>:    syscall
   0x00007ffff7355fc4 <+36>:    push   %rdi
   0x00007ffff7355fc5 <+37>:    test   %rax,%rax
   0x00007ffff7355fc8 <+40>:    je     0x7ffff7355fd2 <vfork+50>
   0x00007ffff7355fca <+42>:    mov    %esi,%fs:0x2d4
   0x00007ffff7355fd2 <+50>:    cmp    $0xfffff001,%eax
   0x00007ffff7355fd7 <+55>:    jae    0x7ffff7355fda <vfork+58>
   0x00007ffff7355fd9 <+57>:    retq
   0x00007ffff7355fda <+58>:    mov    0x2e0fc7(%rip),%rcx        # 0x7ffff7636fa8
   0x00007ffff7355fe1 <+65>:    xor    %edx,%edx
   0x00007ffff7355fe3 <+67>:    sub    %rax,%rdx
   0x00007ffff7355fe6 <+70>:    mov    %edx,%fs:(%rcx)
   0x00007ffff7355fe9 <+73>:    or     $0xffffffffffffffff,%rax
   0x00007ffff7355fed <+77>:    jmp    0x7ffff7355fd9 <vfork+57>

……

    所以父进程在库函数中运行时,不用担心栈上的数据已经被子进程修改(它根本不去使用栈上的数据)。然而call/ret指令却不得不使用栈(因为返回地址自动会被CPU放在栈上),如果子进程在vfork后调用其他函数,会使得父进程在进入库函数vfork时通过call指令在栈上留下的“返回地址”被擦掉。
事情的确是这样。于是库函数vfork为了解决这个问题,做了一些手脚,它并没有让栈上的“返回地址”一直留在栈上。注意上面的汇编代码,进入库函数vfork的第一条指令就是“pop %rdi”,把放在栈上的“返回地址”弹到了rdi中去,保存起来。然后在系统调用vfork返回后(int 0x80是用于系统调用的指令),再“push %ecx”,把“返回地址”放回去。

     库函数vfork和普通函数的调用开始处汇编不同,它没有压入栈中数据,栈中只保存返回地址(虽然在系统调用时使用过但是最终会还原),可以从vfork库函数的汇编代码中看到,库函数进行系统调用vfork时先做pop    %rdi把返回地址保存下来,当进行完syscall 从新写入返回地址,然后根据系统调用vfork的返回值做一些处理然后最终都会执行到retq 指令 返回保存的地址。所以父子进程在不破坏返回地址的时候都能返回到正确的地址,如果子进程违规则会导致不确定的返回地址!

UDP穿透NAT的原理

       NAT(Network Address Translators),网络地址转换:网络地址转换是在IP地址日益缺乏的情况下产生的,它的主要目的就是为了能够地址重用。NAT分为两大类,基本的NAT和NAPT(Network Address/Port Translator)。最开始NAT是运行在路由器上的一个功能模块。最先提出的是基本的NAT,它的产生基于如下事实:一个私有网络(域)中的节点中只有很少的节点需要与外网连接(呵呵,这是在上世纪90年代中期提出的)。那么这个子网中其实只有少数的节点需要全球唯一的IP地址,其他的节点的IP地址应该是可以重用的。

       因此,基本的NAT实现的功能很简单,在子网内使用一个保留的IP子网段,这些IP对外是不可见的。子网内只有少数一些IP地址可以对应到真正全球唯一的IP地址。如果这些节点需要访问外部网络,那么基本NAT就负责将这个节点的子网内IP转化为一个全球唯一的IP然后发送出去。(基本的NAT会改变IP包中的原IP地址,但是不会改变IP包中的端口)。关于基本的NAT可以参看RFC 1631。

       另外一种NAT叫做NAPT,从名称上我们也可以看得出,NAPT不但会改变经过这个NAT设备的IP数据报的IP地址,还会改变IP数据报的TCP/UDP端口。基本NAT的设备可能我们见的不多(呵呵,我没有见到过),NAPT才是我们真正讨论的主角。看下图:

Server S1

18.181.0.31:1235

|

^ Session 1 (A-S1) ^ |

| 18.181.0.31:1235 | |

v 155.99.25.11:62000 v |

|

NAT

155.99.25.11

|

^ Session 1 (A-S1) ^ |

| 18.181.0.31:1235 | |

v 10.0.0.1:1234 v |

|

Client A

10.0.0.1:1234

     有一个私有网络10.*.*.*,Client A是其中的一台计算机,这个网络的网关(一个NAT设备)的外网IP是155.99.25.11(应该还有一个内网的IP地址,比如10.0.0.10)。如果Client A中的某个进程(这个进程创建了一个UDP Socket,这个Socket绑定1234端口)想访问外网主机18.181.0.31的1235端口,那么当数据包通过NAT时会发生什么事情呢?

     首先NAT会改变这个数据包的原IP地址,改为155.99.25.11。接着NAT会为这个传输创建一个Session(Session是一个抽象的概念,如果是TCP,也许Session是由一个SYN包开始,以一个FIN包结束。而UDP呢,以这个IP的这个端口的第一个UDP开始,结束呢,呵呵,也许是几分钟,也许是几小时,这要看具体的实现了)并且给这个Session分配一个端口,比如62000,然后改变这个数据包的源端口为62000。所以本来是(10.0.0.1:1234->18.181.0.31:1235)的数据包到了互联网上变为了(155.99.25.11:62000->18.181.0.31:1235)。一旦NAT创建了一个Session后,NAT会记住62000端口对应的是10.0.0.1的1234端口,以后从18.181.0.31发送到62000端口的数据会被NAT自动的转发到10.0.0.1上。(注意:这里是说18.181.0.31发送到62000端口的数据会被转发,其他的IP发送到这个端口的数据将被NAT抛弃)这样Client A就与Server S1建立以了一个连接。呵呵,上面的基础知识可能很多人都知道了,那么下面是关键的部分了。

看看下面的情况:

Server S1 Server S2

18.181.0.31:1235 138.76.29.7:1235

| |

| |

+———————-+———————-+

|

^ Session 1 (A-S1) ^ | ^ Session 2 (A-S2) ^

| 18.181.0.31:1235 | | | 138.76.29.7:1235 |

v 155.99.25.11:62000 v | v 155.99.25.11:62000 v

|

Cone NAT

155.99.25.11

|

^ Session 1 (A-S1) ^ | ^ Session 2 (A-S2) ^

| 18.181.0.31:1235 | | | 138.76.29.7:1235 |

v 10.0.0.1:1234 v | v 10.0.0.1:1234 v

|

Client A

10.0.0.1:1234

      接上面的例子,如果Client A的原来那个Socket(绑定了1234端口的那个UDP Socket)又接着向另外一个Server S2发送了一个UDP包,那么这个UDP包在通过NAT时会怎么样呢?这时可能会有两种情况发生,一种是NAT再次创建一个Session,并且再次为这个Session分配一个端口号(比如:62001)。另外一种是NAT再次创建一个Session,但是不会新分配一个端口号,而是用原来分配的端口号62000。前一种NAT叫做Symmetric NAT,后一种叫做Cone NAT。我们期望我们的NAT是第二种,呵呵,如果你的NAT刚好是第一种,那么很可能会有很多P2P软件失灵。(可以庆幸的是,现在绝大多数的NAT属于后者,即Cone NAT)

      好了,我们看到,通过NAT,子网内的计算机向外连结是很容易的(NAT相当于透明的,子网内的和外网的计算机不用知道NAT的情况)。但是如果外部的计算机想访问子网内的计算机就比较困难了(而这正是P2P所需要的)。那么我们如果想从外部发送一个数据报给内网的计算机有什么办法呢?首先,我们必须在内网的NAT上打上一个”洞”(也就是前面我们说的在NAT上建立一个Session),这个洞不能由外部来打,只能由内网内的主机来打。而且这个洞是有方向的,比如从内部某台主机(比如:192.168.0.10)向外部的某个IP(比如:219.237.60.1)发送一个UDP包,那么就在这个内网的NAT设备上打了一个方向为219.237.60.1的”洞”,(这就是称为UDP Hole Punching的技术)以后219.237.60.1就可以通过这个洞与内网的192.168.0.10联系了。(但是其他的IP不能利用这个洞)。

       呵呵,现在该轮到我们的正题P2P了。有了上面的理论,实现两个内网的主机通讯就差最后一步了:那就是鸡生蛋还是蛋生鸡的问题了,两边都无法主动发出连接请求,谁也不知道谁的公网地址,那我们如何来打这个洞呢?我们需要一个中间人来联系这两个内网主机。

现在我们来看看一个P2P软件的流程,以下图为例:

Server S (219.237.60.1)

|

|

+———————-+———————-+

| |

NAT A (外网IP:202.187.45.3) NAT B (外网IP:187.34.1.56)

| (内网IP:192.168.0.1) | (内网IP:192.168.0.1)

| |

Client A (192.168.0.20:4000) Client B (192.168.0.10:40000)

      首先,Client A登录服务器,NAT A为这次的Session分配了一个端口60000,那么Server S收到的Client A的地址是202.187.45.3:60000,这就是Client A的外网地址了。同样,Client B登录Server S,NAT B给此次Session分配的端口是40000,那么Server S收到的B的地址是187.34.1.56:40000。此时,Client A与Client B都可以与Server S通信了。如果Client A此时想直接发送信息给Client B,那么他可以从Server S那儿获得B的公网地址187.34.1.56:40000,是不是Client A向这个地址发送信息Client B就能收到了呢?答案是不行,因为如果这样发送信息,NAT B会将这个信息丢弃(因为这样的信息是不请自来的,为了安全,大多数NAT都会执行丢弃动作)。现在我们需要的是在NAT B上打一个方向为202.187.45.3(即Client A的外网地址)的洞,那么Client A发送到187.34.1.56:40000的信息,Client B就能收到了。这个打洞命令由谁来发呢,呵呵,当然是Server S。

       总结一下这个过程:如果Client A想向Client B发送信息,那么Client A发送命令给Server S,请求Server S命令Client B向Client A方向打洞。呵呵,是不是很绕口,不过没关系,想一想就很清楚了,何况还有源代码呢(侯老师说过:在源代码面前没有秘密 8)),然后Client A就可以通过Client B的外网地址与Client B通信了。

       注意:以上过程只适合于Cone NAT的情况,如果是Symmetric NAT,那么当Client B向Client A打洞的端口已经重新分配了,Client A将无法知道这个端口(如果Symmetric NAT的端口是顺序分配的,那么我们或许可以猜测这个端口号,可是由于可能导致失败的因素太多,我们不推荐这种猜测端口的方法)。

【转】NAT的四种类型及类型检测

     考虑到UDP的无状态特性,目前针对其的NAT实现大致可分为Full Cone、Restricted Cone、Port Restricted Cone和Symmetric NAT四种。值得指出的是,对于TCP协议而言,一般来说,目前NAT中针对TCP的实现基本上是一致的,其间并不存在太大差异,这是因为TCP协议本身 便是面向连接的,因此无需考虑网络连接无状态所带来复杂性。

     用语定义

1.内部Tuple:指内部主机的私有地址和端口号所构成的二元组,即内部主机所发送报文的源地址、端口所构成的二元组
    2.外部Tuple:指内部Tuple经过NAT的源地址/端口转换之后,所获得的外部地址、端口所构成的二元组,即外部主机收到经NAT转换之后的报文时,它所看到的该报文的源地址(通常是NAT设备的地址)和源端口
   3.目标Tuple:指外部主机的地址、端口所构成的二元组,即内部主机所发送报文的目标地址、端口所构成的二元组

    详细释义

1. Full Cone NAT:所有来自同一 个内部Tuple X的请求均被NAT转换至同一个外部Tuple Y,而不管这些请求是不是属于同一个应用或者是多个应用的。除此之外,当X-Y的转换关系建立之后,任意外部主机均可随时将Y中的地址和端口作为目标地址 和目标端口,向内部主机发送UDP报文,由于对外部请求的来源无任何限制,因此这种方式虽然足够简单,但却不那么安全。

   2. Restricted Cone NAT: 它是Full Cone的受限版本:所有来自同一个内部Tuple X的请求均被NAT转换至同一个外部Tuple Y,这与Full Cone相同,但不同的是,只有当内部主机曾经发送过报文给外部主机(假设其IP地址为Z)后,外部主机才能以Y中的信息作为目标地址和目标端口,向内部 主机发送UDP请求报文,这意味着,NAT设备只向内转发(目标地址/端口转换)那些来自于当前已知的外部主机的UDP报文,从而保障了外部请求来源的安 全性。

3. Port Restricted Cone NAT:它是Restricted Cone NAT的进一步受限版。只有当内部主机曾经发送过报文给外部主机(假设其IP地址为Z且端口为P)之后,外部主机才能以Y中的信息作为目标地址和目标端 口,向内部主机发送UDP报文,同时,其请求报文的源端口必须为P,这一要求进一步强化了对外部报文请求来源的限制,从而较Restrictd Cone更具安全性。

   4. Symmetric NAT:这是一种比所有Cone NAT都要更为灵活的转换方式:在Cone NAT中,内部主机的内部Tuple与外部Tuple的转换映射关系是独立于内部主机所发出的UDP报文中的目标地址及端口的,即与目标Tuple无关; 在Symmetric NAT中,目标Tuple则成为了NAT设备建立转换关系的一个重要考量:只有来自于同一个内部Tuple 、且针对同一目标Tuple的请求才被NAT转换至同一个外部Tuple,否则的话,NAT将为之分配一个新的外部Tuple;打个比方,当内部主机以相 同的内部Tuple对2个不同的目标Tuple发送UDP报文时,此时NAT将会为内部主机分配两个不同的外部Tuple,并且建立起两个不同的内、外部 Tuple转换关系。与此同时,只有接收到了内部主机所发送的数据包的外部主机才能向内部主机返回UDP报文,这里对外部返回报文来源的限制是与Port Restricted Cone一致的。不难看出,如果说Full Cone是要求最宽松NAT UDP转换方式,那么,Symmetric NAT则是要求最严格的NAT方式,其不仅体现在转换关系的建立上,而且还体现在对外部报文来源的限制方面。

    P2P的NAT研究 
    第一部分:NAT介绍 
    第二部分:NAT类型检测

第一部分: NAT介绍
各种不同类型的NAT(according to RFC) 
Full Cone NAT:
   内网主机建立一个UDP socket(LocalIP:LocalPort) 第一次使用这个socket给外部主机发送数据时NAT会给其分配一个公网(PublicIP:PublicPort),以后用这个socket向外面任何主机发送数据都将使用这对(PublicIP:PublicPort)。此外,任何外部主机只要知道这个(PublicIP:PublicPort)就可以发送数据给(PublicIP:PublicPort),内网的主机就能收到这个数据包 
Restricted Cone NAT:
   内网主机建立一个UDP socket(LocalIP:LocalPort) 第一次使用这个socket给外部主机发送数据时NAT会给其分配一个公网(PublicIP:PublicPort),以后用这个socket向外面任何主机发送数据都将使用这对(PublicIP:PublicPort)。此外,如果任何外部主机想要发送数据给这个内网主机,只要知道这个(PublicIP:PublicPort)并且内网主机之前用这个socket曾向这个外部主机IP发送过数据。只要满足这两个条件,这个外部主机就可以用自己的(IP,任何端口)发送数据给(PublicIP:PublicPort),内网的主机就能收到这个数据包 
Port Restricted Cone NAT:
    内网主机建立一个UDP socket(LocalIP:LocalPort) 第一次使用这个socket给外部主机发送数据时NAT会给其分配一个公网(PublicIP:PublicPort),以后用这个socket向外面任何主机发送数据都将使用这对(PublicIP:PublicPort)。此外,如果任何外部主机想要发送数据给这个内网主机,只要知道这个(PublicIP:PublicPort)并且内网主机之前用这个socket曾向这个外部主机(IP,Port)发送过数据。只要满足这两个条件,这个外部主机就可以用自己的(IP,Port)发送数据给(PublicIP:PublicPort),内网的主机就能收到这个数据包 
Symmetric NAT:
    内网主机建立一个UDP socket(LocalIP,LocalPort),当用这个socket第一次发数据给外部主机1时,NAT为其映射一个(PublicIP-1,Port-1),以后内网主机发送给外部主机1的所有数据都是用这个(PublicIP-1,Port-1),如果内网主机同时用这个socket给外部主机2发送数据,第一次发送时,NAT会为其分配一个(PublicIP-2,Port-2), 以后内网主机发送给外部主机2的所有数据都是用这个(PublicIP-2,Port-2).如果NAT有多于一个公网IP,则PublicIP-1和PublicIP-2可能不同,如果NAT只有一个公网IP,则Port-1和Port-2肯定不同,也就是说一定不能是PublicIP-1等于 PublicIP-2且Port-1等于Port-2。此外,如果任何外部主机想要发送数据给这个内网主机,那么它首先应该收到内网主机发给他的数据,然后才能往回发送,否则即使他知道内网主机的一个(PublicIP,Port)也不能发送数据给内网主机,这种NAT无法实现UDP-P2P通信。

第二部:NAT类型检测

前提条件:有一个公网的Server并且绑定了两个公网IP(IP-1,IP-2)。这个Server做UDP监听(IP-1,Port-1),(IP-2,Port-2)并根据客户端的要求进行应答。

第一步:检测客户端是否有能力进行UDP通信以及客户端是否位于NAT后?

客户端建立UDP socket然后用这个socket向服务器的(IP-1,Port-1)发送数据包要求服务器返回客户端的IP和Port, 客户端发送请求后立即开始接受数据包,要设定socket Timeout(300ms),防止无限堵塞. 重复这个过程若干次。如果每次都超时,无法接受到服务器的回应,则说明客户端无法进行UDP通信,可能是防火墙或NAT阻止UDP通信,这样的客户端也就 不能P2P了(检测停止)。
当客户端能够接收到服务器的回应时,需要把服务器返回的客户端(IP,Port)和这个客户端socket的 (LocalIP,LocalPort)比较。如果完全相同则客户端不在NAT后,这样的客户端具有公网IP可以直接监听UDP端口接收数据进行通信(检 测停止)。否则客户端在NAT后要做进一步的NAT类型检测(继续)。

第二步:检测客户端NAT是否是Full Cone NAT?

客户端建立UDP socket然后用这个socket向服务器的(IP-1,Port-1)发送数据包要求服务器用另一对(IP-2,Port-2)响应客户端的请求往回 发一个数据包,客户端发送请求后立即开始接受数据包,要设定socket Timeout(300ms),防止无限堵塞. 重复这个过程若干次。如果每次都超时,无法接受到服务器的回应,则说明客户端的NAT不是一个Full Cone NAT,具体类型有待下一步检测(继续)。如果能够接受到服务器从(IP-2,Port-2)返回的应答UDP包,则说明客户端是一个Full Cone NAT,这样的客户端能够进行UDP-P2P通信(检测停止)。

第三步:检测客户端NAT是否是Symmetric NAT?

客户端建立UDP socket然后用这个socket向服务器的(IP-1,Port-1)发送数据包要求服务器返回客户端的IP和Port, 客户端发送请求后立即开始接受数据包,要设定socket Timeout(300ms),防止无限堵塞. 重复这个过程直到收到回应(一定能够收到,因为第一步保证了这个客户端可以进行UDP通信)。
用同样的方法用一个socket向服务器的(IP-2,Port-2)发送数据包要求服务器返回客户端的IP和Port。
比 较上面两个过程从服务器返回的客户端(IP,Port),如果两个过程返回的(IP,Port)有一对不同则说明客户端为Symmetric NAT,这样的客户端无法进行UDP-P2P通信(检测停止)。否则是Restricted Cone NAT,是否为Port Restricted Cone NAT有待检测(继续)。

第四步:检测客户端NAT是否是Restricted Cone NAT还是Port Restricted Cone NAT?

客户端建立UDP socket然后用这个socket向服务器的(IP-1,Port-1)发送数据包要求服务器用IP-1和一个不同于Port-1的端口发送一个UDP 数据包响应客户端, 客户端发送请求后立即开始接受数据包,要设定socket Timeout(300ms),防止无限堵塞. 重复这个过程若干次。如果每次都超时,无法接受到服务器的回应,则说明客户端是一个Port Restricted Cone NAT,如果能够收到服务器的响应则说明客户端是一个Restricted Cone NAT。以上两种NAT都可以进行UDP-P2P通信。

注:以上检测过程中只说明了可否进行UDP-P2P的打洞通信,具体怎么通信一般要借助于Rendezvous Server。另外对于Symmetric NAT不是说完全不能进行UDP-P2P达洞通信,可以进行端口预测打洞,不过不能保证成功。

Reactor模型Preactor模型

      通常的,对一个文件描述符指定的文件或设备, 有两种工作方式: 阻塞与非阻塞。所谓阻塞方式的意思是指, 当试图对该文件描述符进行读写时, 如果当时没有东西可读,或者暂时不可写, 程序就进入等待状态, 直到有东西可读或者可写为止。而对于非阻塞状态, 如果没有东西可读, 或者不可写, 读写函数马上返回, 而不会等待。系统I/O方式可分为阻塞,非阻塞同步和非阻塞异步三类,三种方式中,非阻塞异步模式的扩展性和性能最好。主要是讲了两种IO多路复用模式:Reactor和Proactor,并对它们进行了比较。

     一般地,I/O多路复用机制都依赖于一个事件多路分离器(Event Demultiplexer)。分离器对象可将来自事件源的I/O事件分离出来,并分发到对应的read/write事件处理器(Event Handler)。开发人员预先注册需要处理的事件及其事件处理器(或回调函数);事件分离器负责将请求事件传递给事件处理器。两个与事件分离器有关的模式是Reactor和Proactor。Reactor模式采用同步IO,而Proactor采用异步IO。   什么是同步和异步,同步和异步是针对应用程序和内核的交互而言的,同步指的是用户进程触发IO操作并等待或者轮询的去查看IO操作是否就绪,而异步是指用户进程触发IO操作以后便开始做自己的事情,而当IO操作已经完成的时候会得到IO完成的通知(异步的特点就是通知)。而阻塞和非阻塞是针对于进程在访问数据的时候,根据IO操作的就绪状态来采取的不同方式,说白了是一种读取或者写入操作函数的实现方式,阻塞方式下读取或者写入函数将一直等待,而非阻塞方式下,读取或者写入函数会立即返回一个状态值。

   一般来说I/O模型可以分为:同步阻塞,同步非阻塞,异步阻塞,异步非阻塞IO

同步阻塞IO: 在此种方式下,用户进程在发起一个IO操作以后,必须等待IO操作的完成,只有当真正完成了IO操作以后,用户进程才能运行。JAVA传统的IO模型属于此种方式!

同步非阻塞IO: 在此种方式下,用户进程发起一个IO操作以后边可返回做其它事情,但是用户进程需要时不时的询问IO操作是否就绪,这就要求用户进程不停的去询问,从而引入不必要的CPU资源浪费。其中目前JAVA的NIO就属于同步非阻塞IO。

异步阻塞IO:此种方式下是指应用发起一个IO操作以后,不等待内核IO操作的完成,等内核完成IO操作以后会通知应用程序,这其实就是同步和异步最关键的区别,同步必须等待或者主动的去询问IO是否完成,那么为什么说是阻塞的呢?因为此时(通知)是通过select系统调用来完成的,而得到通知以后实际的read\write还是得需要我们自己去做。我们自己去拿到数据然后处理,非阻塞模型则是在得到通知的时候数据也直径给我们了,不必自己做read\write了。

异步非阻塞IO:在此种模式下,用户进程只需要发起一个IO操作然后立即返回,等IO操作真正的完成以后,应用程序会得到IO操作完成的通知,此时用户进程只需要对数据进行处理就好了,不需要进行实际的IO读写操作,因为真正的IO读取或者写入操作已经由内核完成了。目前Java中还没有支持此种IO模型。

搞清楚了以上概念以后,我们再回过头来看看,Reactor模式和Proactor模式。

首先来看看Reactor模式,Reactor模式应用于同步I/O的场景。我们分别以读操作和写操作为例来看看Reactor中的具体步骤:

读取操作:

1. 应用程序注册读就绪事件和相关联的事件处理器

2. 事件分离器等待事件的发生

3. 当发生读就绪事件的时候,事件分离器调用第一步注册的事件处理器

4. 事件处理器首先执行实际的读取操作,然后根据读取到的内容进行进一步的处理

写入操作类似于读取操作,只不过第一步注册的是写就绪事件。

下面我们来看看Proactor模式中读取操作和写入操作的过程:

读取操作:

1. 应用程序初始化一个异步读取操作,然后注册相应的事件处理器,此时事件处理器不关注读取就绪事件,而是关注读取完成事件,这是区别于Reactor的关键。

2. 事件分离器等待读取操作完成事件

3. 在事件分离器等待读取操作完成的时候,操作系统调用内核线程完成读取操作(异步IO都是操作系统负责将数据读写到应用传递进来的缓冲区供应用程序操作,操作系统扮演了重要角色),并将读取的内容放入用户传递过来的缓存区中。这也是区别于Reactor的一点,Proactor中,应用程序需要传递缓存区。

4. 事件分离器捕获到读取完成事件后,激活应用程序注册的事件处理器,事件处理器直接从缓存区读取数据,而不需要进行实际的读取操作。

Proactor中写入操作和读取操作,只不过感兴趣的事件是写入完成事件。

从上面可以看出,Reactor和Proactor模式的主要区别就是真正的读取和写入操作是有谁来完成的,Reactor中需要应用程序自己读取或者写入数据,而Proactor模式中,应用程序不需要进行实际的读写过程,它只需要从缓存区读取或者写入即可,操作系统会读取缓存区或者写入缓存区到真正的IO设备。 综上所述,同步和异步是相对于应用和内核的交互方式而言的,同步 需要主动去询问,而异步的时候内核在IO事件发生的时候通知应用程序,而阻塞和非阻塞仅仅是系统在调用系统调用的时候函数的实现方式而已

Linux信号相关学习

        Linux假如现在在一个信号处理程序中,当有一个新的信号来临时会先中断目前的信号处理程序,进入新信号的信号处理程序,处理完毕后返回继续执行,如果在新信号处理程序中调用longjmp函数,则就会破坏刚才中断的信号处理程序,造成刚才中断的信号处理程序不能执行完毕后面无法执行了。sigsuspend和pause函数都会受当前进程的信号屏蔽字的影响,对在当前屏蔽字中的信号不能唤醒由这两个函数造成休眠的进程,sigsuspend函数的作用是将当前进程屏蔽字设置成函数参数指定的,然后休眠,唤醒后设置会函数调用前的信号屏蔽字。如果一个进程同时注册SIGCHLD信号处理和wait子进程,先处理SIGCHLD处理程序,再从wait返回,如果在调用wait时屏蔽SIGCHLD则wait执行后恢复屏蔽会将阻塞的信号发送给进程。在sigprocmask函数返回前递交给信号处理程序处理。或者是在sigsuspend休眠时递送(此时未在屏蔽字之中)。如果调用pause函数希望在收到这个信号时程序能够唤醒则会造成在递送给pause时会产生竞争条件,在sigprocmask函数返回前已经递交过了,所以会造成pause永远休眠。